CSE 143 AD

Project 1 Write-Up

Professor Hal Perkins

Teaching Assistant Danny Wyatt

October 31st, 2003

Ryan Prins

0122258
Project Introduction

For the first project in CSE 143 our assignment was to create an aquarium that would be displayed on the user’s screen. This project included many different aspects of programming, including inheritance, swing, abstract classes, and user interaction just to name a few. The purpose of this project was to get our feet wet as programmers with some more of the various aspects of the Java programming language. All of these concepts were new to the class and were implemented as the project went along.

This project was broken down into three parts. Each part brought new aspects to the program and each week the program changed states to adapt to the new concepts that were taught to us in class. We started out with inheritance, moved onto swing, and ended up utilizing the user interactions of the Java language. With these tools, we were able to create unique code that populated a simulated aquarium, displayed that aquarium on the user’s screen, and offered the user some kind of input to the model and the view.
System Operation

To operate our program from a user’s perspective the following steps should be followed to begin our simulation:

1) Start Dr. Java or your Java command line tool
2) Load all of the project classes from the directory that you placed them (usually C:\CSE)

3) In the interactions pane or your Java command line tool, enter in the following command:

Java Simulator

4) At this point the simulation should be running. NOTE: The simulation window may be minimized to begin.
5) To interact with the simulation you can do the following:

a. Click on the screen to add a Goldfish around the area of the mouse click.

b. Press the “pause” button to pause the simulation.

c. Press the “resume” button to resume the simulation.

d. Press the “stop” button to stop the simulation.

e. Press the “addrandom” button to add a random fish at a random location.

6) When you are complete with viewing the aquarium you may close the window to quit the simulation.

System Description

Our system was separated into 4 distinct parts. These were, the Fish class and all sub classes (Shark, Salmon, Goldfish), the Aquarium class, our Controller class, and our Graphics classes. Separating these components into these distinct areas provided for easy implementation of components that were added later. Now, we did not get it right on the first try around, but in the end of the project we are confident that for our model we have it set up very well and accomplished everything that we wanted to for our layout. Below I’ll go into detail on these components and why they were so important to our simulation and the benefits to having them separated like we have.
Class Fish and All Subclasses

The Fish class was the foundation for our three types of Fish. This class was superclass for these types of Fish and class Fish held many important methods like getX, getY, turn, changeSpeed, swim, and eat, just to name a few. These methods served the same purpose for all of the subclasses of Fish, so this made the class Fish an obvious choice for the superclass for all of our Fish. It was the implementation in the various subclasses that helped define the particular characteristics of the Fish. A diagram of how this structure is laid out is below.

[image: image1]

All of the above classes were designed by us and their implementation in our setup was carefully planned. The Fish class is the main class for all of our fish. This class controls all of their movement, eating, change in speed, or anything else that a fish might do in the tank. Early in our design this class was used exclusively for our testing off the methods included in the Fish class. The toString() method was used to check for accuracy and proper use of the algorithms we derived for our fish.

For each of the sub classes of Fish the way we made them different was displayed in the modifiers that we used for the different types of Fish. Fore example, when we created a Fish of type Goldfish we used the following constructor:
public Goldfish (double x, double y, double deg, double spe, double ene, double xbo, double ybo)

 {

 super(x, y, deg, spe, 75, ene, 2, xbo, ybo);

 this.declareFishtype("goldfish");

 }

From the above constructor you can note that there are two modifiers in the call to the super constructor. These values, initial calorie base and max speed, varied for each type of Fish. This was one of the ways that we defined how the different types of Fish were unique to each other. Also, it is noted that we also set a String type to the fish in the this.declareFishtype(“goldfish”); This was used later when we called our methods in our controller class to determine what the type of Fish was and if it was able to eat other types of fish. All of the subclasses of Fish contained the following methods to create their uniqueness, public void swim(double seconds), public void turn(double degreesChanged, double time). The rest of the methods used by these objects came directly from the Fish class itself. This is because we felt that all the Fish had the same traits, but that their only difference was speed and size.

Also it should be pointed out that Fish implemented Food. This interface contained the structure for the methods double getCalories(); and void beFood();. The use of these methods was to get the calories of the Food or Fish (if it was considered Food) or to make a Fish object Food (this was only the case when a Fish object was declared dead). This Food interface was also implemented by FishFood. FishFood was the food that was in the aquarium that was not dead Fish objects. Each FishFood object in the tank was one calorie and was placed about the tank for the different types of Fish to come around and eat.
Aquarium Class

This class was the heart of our simulation. This created our aquarium model and added all the necessary components to it to make a complete model. This meant that this class created instances of all the types of Fish and the FishFood that the Fish objects ate. It also operated all of the Fish movement, what they ate, how to handle the concern if they hit the border of the tank and other key features to creating and maintaining a livable habitat for our Fish.

The most complex part of this class is in the interaction method. This method contains how the Fish interact with each other. This is the main purpose of this class, right next to populating the aquarium. This class was written from scratch and was by far the most key component discussed so far. Without this class there would not be any interaction defined between all of the Fish and there would be no way to populate our tank. This class also server another important purpose. When we were moving onto part b of this project we felt that it would be more beneficial to create a separate class that controlled all of the Fish interactions instead of creating all of this in the classes that contained the code for the graphics interface. This decision was made because it would keep our code cleaner and we could just create and instance of the Aquarium class in our Controller and we would not need to worry about adjusting anything in our graphics classes. This was the biggest reason for this class and it also turned out to be one of the project’s biggest benefits.
Controller Class

This class, like the Aquarium class, was another important part of this project. This class’ responsibility was to generate the output needed by our graphics classes to draw the Fish on the screen. This class was another step class to the graphics classes. This class iterated through our ArrayList of objects in the Aquarium and also gave the Fish unique properties that would come in useful when creating the visual representation of them on the screen. The properties that we used to differentiate the Fish were the color of their circle and the size of the circle itself. The goldfish was the smallest and the shark was the largest in our model. Now, the visual Fish objects were not created in this class but, their properties were defined here. There was a separate class, FishDraw, which created the visual representation of the Fish.

This class also included methods that were added in the final part of this project to pause, resume, stop, add Goldfish, and add a random Fish to the model. These methods are called from the listeners that are used to catch the interactions with the screen and the buttons on our graphics frame.
Graphics Classes & Listeners

The main class for this part of the project was the Frame class. This class was written to create the JFrame and JPannels that were to be used for the graphics end of our project. This class also housed the mouse listeners and the button listeners for our user interactions. Some of the code from the Frame, SimButtonListener, SimMouseListener, SimThing, SimView classes was used from the in class examples displayed by Hal Perkins.

The listener classes were not as easy to implement as we would have liked. It took some restructuring to get our notify() methods to interact in the way that we needed for our project to interact properly. This was the main reason why we have to create a Frame class. We kept running into issues with our notification of interactions to the components that were used for drawing.

Overall, we have many classes that control the graphics and interaction of our project (Frame, SimButtonListener, SimMouseListener, SimThing, SimView, Drawer, and FishDraw). But this structured was preferred to us over using nested classes, because we had a hard time finding what we needed when we used nested classes. We started with some of the classes nested, but we realized that we had a hard time finding what we needed and at times we could not remember what classes were where when we needed to find a particular method call.
Process

Our initial idea was to create specific modules that would control what happened in the model. In the above section this was pretty well laid out on what each did and how it did it. But, we felt that if we could group specific tasks into groups we could be able to control our model better and therefore find problems easier. We found out this to be true a majority of the time, but not all the time. In the last part of the project we had a hard time finding out why our notify() method was not operating properly. It took at least an hour of sifting through our code to figure out that what we were trying to notify was accepting our notification but was not doing anything with this notification. When we tried to formulate a solution to this problem we realized that another class was going to be needed to get the notifications to work properly. This is what spawned the Frame class. We moved some of the methods out into this class, mostly the creation of the JPannel, JFrames, buttons and their associated listeners. After doing this we got a positive result from our notify() method. This was the largest design change that we had to make to get the project to work like it was required. Other that this major change to our project, we had a very good plan laid out for us to create a structure that would be able to adapt to all aspects of the project, no matter what the next section of the project was.

Overall the pair programming worked very well. It has been two years since I have been programming in Java and it was nice to have another person there to help out in the sections when you got stuck. It was also nice because one could research something in the Sun Java Documentation while the other partner fixed some code on a non related issue. This helped speed the programming up and was also a great way to learn and teach the concepts learned in class. We always met in the IPL on Fridays to start the project and to see how much we could get done that day before getting burned out. We then planned another time where we could meet and finish up the program. Usually it only took two trips to the IPL to get the project in completed state. The skills that my partner brought to the project complimented my skills very well. He was more maths oriented and knew all the equations for the Fish interactions and I was more of a designer and nit picker of the project. I made sure that methods had appropriate naming and that things would be easy to find and logical in their use. It worked out very well in my opinion.
Testing and Evaluation

For testing our program we had included various outputs to the console to check that our algorithms are accurate and are completing the tasks that we had assigned to them. This helped us verify our code and also made us sure on our debugging that everything was going according to plan. We also used a static main method to start the whole process for our program. This was instrumental in verifying that our program was working in proper order and that the final product was doing exactly what we thought it would do.

The code that we ended up submitting for out final part of the project was very readable, in my opinion. We have documentation and JavaDoc all over our code so that it would be easy for anyone to pickup our code and understand what it does. It was also helpful for us when we looked at it to refresh our minds on exactly what a specific method or class was designed to do. The structure of the code and the names that we used all over our code were easy to follow and did not require much prior knowledge to figure out what they meant.

If I had to do this project over again I probably would take the exact same approach that we ended up with. Creating separate modules of code (packages more or less) helped us centralize our calls and creation of components. So, our code would be very easy to modify and add. There was a decent amount of coupling in these modules, but outside the module there was not coupling between modules. This was the idea for what we did. We wanted to minimize the coupling between modules and keep it all on the same level.

Conclusion

Overall, this project was a great start to CSE 143 for me. It eased me back into programming in Java while at the same time introducing exciting new concepts that helped us develop a program that I didn’t think I could make. The added benefit of having a partner only enhanced this. Not only did you get to interact with someone else in the class on a regular basis, but you also got to compliment skills and talents during the program. I felt that with my partner for this project that we worked really well together and that we both learned a lot from each other.

I think the most important part of this project was taking unknown concepts that have not been used before by us and applying them to a project with specific guidelines. This helped focus our attention and also aimed us to work harder to get the project done in a matter that showed our skills that we learned as programmers and as group partners. This was a great project to use the ideas that were lectured on in class. They were conceptually easy to add to the project, but in reality took a bit of time to grasp and figure out. But, that is part of the process of learning. Overall, I was very pleased with the result of our project and the partner process that was used during this project.
Class

Fish

Class

Goldfish

Class

Salmon

Class

Shark

Food

IMPLEMENTS

INTERFACE

EXTENDS

EXTENDS

EXTENDS

FishFood

IMPLEMENTS

Ryan Prins
Page 2 of 8
10/30/2003

