CSE 143 AD

Project 2 Write Up

Professor Hal Perkins

Teaching Assistant Danny Wyatt

Ryan Prins - 0122258

November 14, 2003
Introduction

For our second project in CSE 143 we were to create a program that would take in a file, categorize a pair of words and the word that followed it, and based on user input, output text that would be completely random from the text that was input by the user. Some of the concepts that we used in this project were: string parsing, using file readers and buffered readers, taking in user input, utilization of hash maps, and being able to handle exceptions. These concepts are all recently presented in lecture and were all applied to this project.

This project was broken down into two parts. In the first part of the project we were to create the string parsing using the readLine() method from the buffered reader. We were to then break the line of text into words and place them into a hash map with the number of times that the line occurred in the input text file. For the second part of the project we were to expand on the concepts that we used in the first half of the project and create random text output. This final part of the project is what will be discussed below.
System Operation

To operate our program from a user’s perspective the following steps should be followed to being using our program:

1. Start Dr. Java.
2. Load all of the project classes form the director that you placed them in.
3. Compile all of the sources.
4. In the interactions pane type in: java Test
5. A window will popup asking you to select a file. You must select a *.txt file from anywhere on your hard drive. When a file is selected, press OK.

6. For a moment the interactions pane will be busy populating the dictionary of words. Once this is complete a box will appear in the interactions pane. In this pane you will need to enter in two words to start the program off.

7. After you press enter the cycles will being. If the output does not end on a sentence, it is because the loop did not finish on the end of a sentence.

8. When you are complete, you can close Dr. Java
System Description

For this project we only created four classes to create the desired output. Each class had a different responsibility to the program and how it interacted. We had a class that ran our simulation (Test), parsed the input text (textParser), stored the text in hash maps (WordDictionary), and a class that open a file and read the contents (fileOpener). We felt that a separate class for each responsibility of the project would be best to get the most efficient result from our program and this would also lower cohesion between classes. Below I will go into detail about what each class’ responsibly was and how they all interacted with each other to make the project work.
FileOpener.java

This class was the base building block for our project. Without this class none of the other classes would be able to function properly. The responsibility of this class was to provide the user with a dialogue to have them select a file to be read and then for the file to be broken down line by line by a BufferedReader. This is all this class did. It took user files and read them line by line. However, as simple as this sounds, this is a very important part of the process. This class is called many times to utilize the next line methods to read the next line in the desired file.
textParser.java

This class had the important job of parsing text and then passing those words off into the WordDictionary class to be stored. The main job of this class was to parse text into single words and to provide a method call to the WordDictionary class to have it generate text for output. This class was difficult to get to operate properly at first since we had issues with getting the white space issues taken care of. However, once this was done, our project worked as it was designed; without any problems.

Originally, in part A of this project, this class was not even created. The main method of this class, returnWord(), was a method in another class. However, we felt that it would be important to make this method its own class. One of our main reasons for doing so was so that we could create instances of it by itself and not have to worry about breaking other important code along the way. This proved to help us out in the final stages of this project when we needed to parse words in other parts of the program. We could just create a new instance of the class and call the method to break out the words in a string and we would be able to do this all without affecting any other parts of the program.

One of the largest challenges that we had in this class was the problem of consecutive white space in a program. It took us a while to come up with a plan to get around this, and in the end we utilize boolean values to verify if we were at the start of the file or at the end of a word. These boolean values proved to solve our problem of consecutive white space and multiple lines that do not have text. As you can see from the code example below we had to take into account the different parts of the file and what might occur when we reached a specific part of the file. This following code example is when we reach the last word in the file. It took us quite a long time to figure this out, but once we figured it out, it worked just as designed.

if(!(charToString).equals(" ") && startOfFile == false && endOfWord == false)

{

 givenLine = null;

 wd.holdWords(currentWord);

}

else

{

givenLine = null;

}
givenLine is the line of text that is from the BufferedReader and is passed as a parameter to this method. All of the checks in the conditional of the if statement were needed to verify that it was the end of the word, not the start of the file, and the last character was not a space. Even though this class severed a simple purpose, it was one of the key parts of this project. It helped us break down our line of text into words and provided us the ability to pass those words onto different methods to be stored.
WordDictionary.java

This class contained all of the necessary methods to create, add, and modify the HashMaps that were used to store our data. The main method that was used was storeToKeyHash(String wordPair, String valueWord). This method put the word pair into a hash set and then added the following word to a new HashMap (if there was no previous one) or added it to the existing HashMap found in the value of the word pair key. This method called on other methods like, checkKeyHash(String wordToCheck), and checkValueHash(String wordToCheck). Those methods checked the current HashMaps to see if there was an instance of the word or words in them. They returned true or false. Those boolean values were used in the conditional statements found in the storeKeyToHash method.

Also in this class was a method that held the parsed words and then created a key and value from them. It was important to have this method because it offered us an easier way to create the strings and to then pass those strings onto the HashMap. A sample of code from this class will show what is done once all of the three string placeholders are filled with strings.

// If all words are not null, add this set to the HashMap

 if(!(this.word1 == null) && !(this.word2 == null) && !(this.word3 == null))

 {

 String inputKey = this.word1 + " " + this.word2;

 String inputValue = this.word3;

 storeToKeyHash(inputKey, inputValue);

 }
As can be seen from the above example, this is a very simple, yet effective, way to add words to our HashMap. We don’t have to worry about words in a pair and then splitting them up; we just reassign the words after they have been input into the HashMap. Word 2 becomes 1 and Word 3 becomes 2 and Word 3 becomes the next passed word from the parsing class.

We also had a method in this class, public String getNextWord(String wordPair), that got the next random when it was passed a word pair. This method was used only after all of the text had been input into the HashMaps. We ran into a problem of getting a null pointer exception in this class when the word pair could not be found in the HashMaps. So, to get around this, we implemented a random word pair generator from the word pairs that we had in our HashMaps. We randomly selected a key and then randomly selected a single word from the value hash for that given key to be our next word. This kept the cycle going when we generated text and then we also did not have the null pointer exception happening anymore.

Test.java

This was our test class. This class created instances of the previous classes and also created our buffered reader and our file reader. It was also used to create the looping needed to create phrases of random text to output in the console screen. This class was only made for the purpose to run the class and no real implementation, except for the looping, was done in this class. We also used this class to catch errors that might occur during the use of our program. The two errors that we caught were a null pointer exception and file not found exception.

Process

As stated earlier our initial design that we used in part A of this project did not work so well for the final part of this project. We pulled out the method that did our parsing and made it be its own class. This was the most crucial design change that we made during our project. This gave us the ability to create an instance of it at any time in any part of the code without affecting any other part of the program that we were writing.

Our design structure was pretty simple. We had 3 classes that controlled different aspects of the process. One class parsed the text, another stored the text, and another class opened the files for use. This kept the code simple and easy to follow. It also makes for easy access to methods when we needed to find them.

One of the problems that we struggled with was how to get a HashMap to be stored inside a HashMap. We had created an instance variable at first but quickly realized that all the keys pointed to only one HashMap. But, after some discussion with my partner and others who were working on this project we realized that we needed a local variable and not an instance variable. Once we got this figured out, we were set and the rest of the project became much easier to deal with.

Again, working with a partner on this project seemed to be beneficial to the outcome in the end. We both complimented each other with our skills and both spent a fair, but equal, amount of time programming. It was nice to have the partner to work ideas off of and to be able to watch for errors when the project was being programmed. The only downside was that times to meet were tough. His schedule was different enough from mine that we meet for long periods of time at once and this was difficult for me to dedicate this much time at once to the project. But, things worked out and I was flexible enough to get changes in my schedule to work things out.

Testing and Evaluation

To test our project we created various files with scenarios that we thought would break our code. One of these files was called spacetest.txt. This file’s only purpose was to check and see if our parsing class did its job parsing white space properly. The text from this test file is below.

[image: image1]
The sample text that we used to train our program was from the book Alice in Wonderland by Lewis Carroll. A sample output that we got from our program was the following:
'Of course twinkling begins with a kind of thing never happened, and now here I am in the long hall, and close to them, and it'll sit up and throw us, with the Queen,' and she told her sister, as well say,' added the Gryphon, with a kind of thing never happened, and now here I am very tired of this. I vote the young man said, 'And your hair has become very white; And yet you incessantly stand on their slates, 'She doesn't believe there's an atom of meaning in it.'
Conclusion

In the end our project worked out better than I had imagined. This project took more time to work on and to think about than the others, but the time spent planning worked to our advantage. I feel that we have a great design and that I really cannot think of another way to design our project. Even though we had our technical issues along the way, the project got completed as required and we figured out our issues by getting help when needed and studying when we needed some more knowledge about a subject. Spending the time to plan out our project in the beginning really helped us out more than I imagined and it would be something that I would do again for the next project. There were many lessons learned from this project. Some were technical, some were not. But, in the end the processes and programming that occurred made this project have a very high satisfaction value when it was completed.

[image: image2]

space below this line and above this line

trailing spaces

 leading space

two spaces between words

Project 2 Program Flow

Output

Phrase Generation

User Input

String Storage

Line Parsing

File Input

User

Ryan Prins
Page 6 of 6
11/13/2003

