CSE 143 AD

Project 3 Write Up

Professor Hal Perkins

Teaching Assistant Danny Wyatt
Ryan Prins – 0122258

December 9th, 2003
Introduction

For our final project in CSE 143 we were to create a program that would create a maze model and then via recursion would have a “robot” crawl through our maze and then return the path that it will follow to complete the maze successfully. The maze was created by a user defined file that contained the starting and ending points plus the size of the maze and the blocks of the maze that were considered solid by the model. Concepts that were used in this project were: input streams, MVC, recursion, and swing.

This project was broken down into two parts. In the first part of the project we created the maze model of the project. This included visually displaying the model on the screen and being able to take a user defined file to create the maze model. In the second part of this project we had to keep all of the parts from the first part of this project but we had to also implement a robot that would crawl through the maze. This process was done by using recursion to find the proper path and then to display it on the screen. The final part of the project is what will be discussed below.

System Operation

To operate our program from a user’s perspective, the following steps should be followed to begin using our program:

1. Start Dr. Java

2. Load all of the project classes from the directory that you placed them in.

3. Compile all of the sources.

4. In the interactions pane type in: java Launcher
5. A window will popup asking you for a test file to load. Select a file that is in the proper format and press OK.

6. The program will run and the path taken will be highlighted in black on the screen.

7. Once you are complete you can close the JAVA window and Dr. Java.

System Description

For this project we had sever classes to generate the desired output for this project. Each class had a different role in the process and how they interacted with each other. We had a class that ran our simulation (Launcher), took user input (FileOpener), created our model (MazeModel), drew our model (MazeDrawer), contained information about the specific maze pieces (Coorinate & MazePiece), and did our JUint testing (MazeModelTest). We had fewer classes during stages of this project but we found that it was easier in some cases to just have more classes and to call them when we needed to create instances of them. But, in the end we got to the point in our project where we were satisfied with the level of cohesion and move on with the project. Below I will briefly discuss each class and what they did for this project to work.
Coordinate.java

This class was very basic in the sense that it’s main responsibility was to return x and y values to the user. This class was important because it offered us an easy way to call methods that would provide us with vauleable information about the position of items in the model and it all afforded us the chance to decrease our cohesion between classes. This, as we later found, was to our advantage when we were trying to create a MVC system that was highly independent of each other. But, this class’ main responsibility was to be used with the MazePiece class for providing valuable information to the user.
FileOpener.java

As the class name states, this class’ main job was to create a file stream with the user and to take that information and put it in a fashion that the model could use to generate the maze. This code was very similar to the code that was use in the 2nd project for this class. The main thing that we needed to change was how the information was stored once it was taken in by the user. This process was covered quickly in part A of this project and in the early stages of part B.
Launcher.java

This was our test class. It launched our project and created all the needed calls to get it in working order. It created our swing window and set some basic parameters for it. This class also creates instances of our model and drawer classes to begin the process of getting the data and formatting in a way that it can be properly displayed on the viewer. This class has one purpose and one only; to start the simulation.
Maze Drawer.java

This class drew the maze on the screen. This class defined the color of the box to print and it also then printed it on the screen. The main bulk of the code in this class was in the paintComponent class. This was because we wanted everything to be updated every time there was a repaint called on the viewer. So, we had the model drawing and the path drawing in this class. It took some time to figure out how to get this to all work properly, but eventually it struck us and we have no problem figuring out what to do with this method in the class.

Some issues that we ran into with this class on how to get the squares in the right position on the screen. We had this problem in part A of the project, but we got this resolved quickly and moved on from there to the finishing parts of the project. A sample bit of code is below:

java.util.ArrayList myMoves = model.getCoordinates();

java.util.Iterator it = myMoves.iterator();

 while(it.hasNext()){

 Coordinate position = (Coordinate)it.next();

 int y = (int)position.getRow();

 int x = (int)position.getColumn();

 int printRow = 0;

 int printCol = 0;

 for(int i = 0; i < y; i++){

 printRow += rowLength;

 }

 for(int i = 0; i < x; i++){

 printCol += columnLength;

 }

 if(!model.isStart(y,x) && !model.isEnd(y,x)){

 g.setColor(Color.black);

 g.fillRect(printCol, printRow , rowLength, columnLength);

 }
This code was in charge of getting the path that the robot will travel and then to display it on the screen. It took the pair of coordinates from the ArrayList of robot moves and then converted it to positions that the viewer could handle. Then once the pixels were worked out we could then print it on the screen. This part took some thinking because we could not figure out how exactly to get this part to work right. Our algorithm was not working properly at the beginning and after doing some debugging and some basic testing of the correct output we stumbled across the proper way to get the path to display on the screen.

This class was not difficult to put together in a programming sense but our challenge was in getting the math to work out right. We always ended up being close, but not close enough at some points. However, in the end it all turned out for the best and our process of getting the model to show up on the screen worked exactly how we imagined.

MazeModel.java

This class was the heart of our project. It was in charge of getting the information from the user’s file stored properly and it then updated the view accordingly. It also contained our recursive method for our robot to crawl through. There were also multiple short methods that would do some basic checking on the spaces around the box or return values that we needed in order to check other aspects of our model.

Our recursive method was a bit tricky to figure out at first. We realized what we needed back from it but we had a hard time getting it to return what were looking for. This was the part of the project that took us the longest to figure out. But, we got it to work in the end and it preformed just like we had planned. We had to check in the recursive method if there were possible ways for the robot to move. If there was then we wanted to run the method again in a new position until we reached our base case which was when we reached the end of our model. It took us a while to get the method call within each case to work properly. We needed to be able to check all of the cells around the current position and then return a way for the model to move. But, we ran into an issue when it reached an dead end. It would just loop over and over in the same spot since we had told the piece that it could not go backtracking. This was a problem that took us a while to figure out, but once we got this method fixed our recursive method worked as planned.

Also, we should note that we used a stack to store our possible moves for the robot. We had to take this stack and pop them into a new stack for our drawing class to be able to use them properly, but once we got that minor problem figured out, we had a working model that would be able to successfully pass the coordinates to the drawer and then the drawer would be able to take those coordinates and draw the path in the proper place.

MazeModelTest.java

This class was for our JUnit testing. We had cases to test and see if it counted the rows and columns properly, and to see if the model was filled with the correct data. This was done to check and see if our model was working as we had thought it would. And after creating this test class we realized that it would work as we had designed and we could be assured that the model stored the data in the way that we thought it would.

MazePiece.java

This class had the job of checking the perimeter of the piece that was passed to it. Some of the things that this class did was check to see if there were any possible moves in a specific position and to also set that a particular path could not be taken. This was used in conjunction with the recursive method to find a path to the end of the maze. One of the methods, which was in charge of moving to the next piece, used many of the boolean return methods that were in this class. The move method looked as follows:
public Coordinate move(){

 double rPos = coor.getRow();

 double cPos = coor.getColumn();

 if(hasPossibleMoves() == false)

 {

 return new Coordinate(-1,-1);

 }

 else

 {

 if(up == true)

 {

 return new Coordinate(rPos-1,cPos);

 }

 else if(down == true)

 {

 return new Coordinate(rPos+1,cPos);

 }

 else if(left == true)

 {

 return new Coordinate(rPos,cPos-1);

 }

 else

 {

 return new Coordinate(rPos,cPos+1);

 }

 }
This method checks to see what the possible moves were and the returned a new Coordinate indicating the move to that position. This relied on the coordinate class and also on instance variable that were used to store whether or not if a particular path could be moved or not.
Process

We started part B of this project with a very solid part A. However this quickly changed when we realize what we would have to do in part B. Our first course of action was to get the model working right for the new parameters that would be passing it in our test file. Once we got this part of the project working properly we moved forward with getting the recursion to work. This was the part of the project that took the most time to accomplish.

The process of thinking out the recursive method took a while and then the process of programming it took even longer. We had the ideas down on paper, but we could not get our recursive method to return something that we could use. So, we ended up adding a couple classes to help us out in this process. I am sure that there is a much more efficient way to do this, but with the time that we had to work on this project and our unfamiliarity with recursion we were at a loss on how to get this to work how we had planned.

So, with us going out an creating a new classes to help us out we soon had a lot of code that was taking us nowhere fast and we had no idea on how to fix it. Eventually we started debugging it and we spent many hours doing this until we got the algorithm working exactly how we needed it to be working for the project to move forward. After the recursion was completed, we could focus on how to represent this on the screen. This was done by adding a few more lines of code to the painComponent method. These newly added lines would be able to print the path of the robot on the screen for the user to see. This was an easy end to the project since we already had the coordinates of the positions that the robot was moving; now it was up to the drawer to get it displayed on the screen properly. Once this was completed we touched up some of the code, removed all debugging code and submitted our program after testing with various test mazes.
Testing and Evaluation

To test our program we first used the JUnit testing to make sure that our model was working properly. Once we were satisfied with the results of the JUnit testing, we moved forward to creating the viewer and then the recursion needed to generate the coordinates needed to move the robot around the test maze. To test our code we had created many test mazes to make sure that we were not missing any ground with our code.

We used test mazes from the CSE discussion board and also created some test mazes of our own to check for cases that we thought would be weak in our code. Once we moved over some of our weak test cases we then tried to make a maze that we would submit with our project. It was really hard to visualize the maze, but we used an Excel spreadsheet to get the basic idea down. What we came up with is below.
	00
	01
	02
	03
	04
	05
	06
	07
	08
	09

	10
	
	12
	13
	
	
	
	
	
	19

	20
	
	22
	23
	24
	25
	
	27
	28
	29

	30
	
	
	
	
	
	
	
	38
	39

	40
	41
	42
	
	44
	45
	46
	47
	48
	49

	
	
	52
	
	
	55
	56
	57
	58
	59

	60
	
	62
	63
	
	
	66
	67
	68
	69

	70
	
	72
	73
	74
	
	76
	77
	78
	79

	80
	
	
	
	
	
	86
	
	
	89

	90
	91
	92
	93
	94
	
	
	
	98
	99

This provided us a visual representation of our maze and it was then easy to get the coordinates to put into our test maze file.

Conclusion

This project tested our ability to work together on concepts that were very new to us and to be able to use them in a way that would get the goal done for this project. This project was, for me, the hardest of the three. I am very shaky on recursion and what exactly it does. I understand it conceptually, but when it comes to a project like this, I get all tripped up. This is where the partner programming came in great. We could throw ideas off of each other and when we got stuck we just had to ask our partner for the needed advice that we needed. This was probably the best use of partner programming, in my opinion.

But, in the end our project turned out working faster than we had imagined and we had to plan our time accordingly to get this project done in a time frame that would allow us to continue studies for our other classes during this time of the quarter. This project also offered me some basic use of recursion that I will be able to build on for other projects and will then be able to expand on it from there. But, this was a good project to start with recursion on.

For me this project was the most rewarding since the concepts, for me, were much more difficult to grasp while programming. In the end the satisfaction level that I had was much greater than the other projects that we did. Also, it taught me a great deal about how to go about testing a project to make sure it does what you think it does and also to work out concepts that you might not understand completely with others that are around you.

In the end I am sure that this project will help me more than I might think, but it is hard to see the benefits through all of the frustration of this project. But, I am sure that I will be glad that this project came about in the end of it all when I have to deal with these concepts later down the line in my programming.
Ryan Prins
Page 2 of 7
12/7/2003

