INFO-340: Database Management and Information Retrieval, Spring 2004, Assignment #4


INFO 340 – Database Management and Information Retrieval

Spring Quarter, 2004

Information School – Informatics

University of Washington

Assignment 4 (A4)

IR Matching and Ranking

Ryan Prins

Informatics

rprins@u.washington.edu
May 26, 2004

Part I: Zipf’s Law
[image: image1.emf]Question #1 Part A Graph

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5

Rank

Frequency


Figure 1: Scatter plot to show Zipf’s law for country populations
Part A
Question #1
The data in the graph shows that there are a few countries with a high population and that there are more countries with lower population counts.
Question #2
Zipf’s law does apply to this data. It is very typical in the sense that there are few points high on the scale and then it tapers off into more points closer together on the scale when you approach the smaller population values. However, since a small sample of populations was use it can be noted that this graph is not completely representative of the data. If more data points were used this graph would be representative.
Question #3
When you have data that has a wide range of values it is more appropriate to put both on a level plane. So, a log scale is used to bring the axis closer together while also maintaining the ratio of the data. Also, by bringing the axis closer together it is possible to complete better analysis of the data since it would be easier to interpret.
Part B
[image: image2.emf]Inverted File #1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5000 10000 15000 20000 25000

log10 (Rank)

log10 (Frequency)


Figure 2: Scatter plot for Zipf’s law on Inverted File #1
Zipf’s law does apply to this graph. When you look at Figure 2 you notice that there are less data points with a higher frequency at the higher rankings (closer to 1) and many more data points and lower frequency at the lower rankings. When you reach roughly the 8,500th rank, the log​10 of the frequency is 0. This way of distribution in accordance with Zipf’s law and how data should be distributed within a scatter plot style graph. This graph is a typical inverse logarithmic function graph that follows Zipf’s law typical data distribution.

[image: image3.emf]Inverted File #2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

log10 Rank

log10 Frequency


Figure 3: Scatter plot for Zipf’s law on Inverted File #2
This graph does follow Zipf’s law, but not in the typical shaping (inverse log) of the distribution of points. The graph follows the law because there is a higher frequency of words at a higher ranking (closer to 1) and a lower frequency of words as you approach higher rankings. The shaping of the graph, a negatively sloped linear line, conforms to this law. The increasing points and the distribution of them is what qualifies this graph to be follow Zipf’s law.
Part II: Terms

Question A
· Inverted File #1: ‘the’ (5829)

· Inverted File #2: ‘p’ (6437)

Question B
· Inverted File #1: ‘</P>’ & ‘<P>’ (187)

· Inverted File #2: ‘p’ (187)

Question C
· Inverted File #1: 23,479

· Inverted File #2: 10,988

Question D
· Inverted File #1
· Case: No folding was applied

· Tokenization: Punctuation was maintained, white space used as separator

· Stemming: Not applied

· Stop Words: These are found in the file

· Inverted File #2

· Case: Forced all to lowercase

· Tokenization: Punctuation and white space were used as separator
· Stemming: Applied/Used

· Stop Words: Some removed

Question E
If you chose Inverted File #1 you would have a larger vocabulary of words (23,479 opposed to 10,988) to search from. If you were to use Inverted File #1 you would find that to complete a simple query, like ‘man’, you would have to also search for: 

· man

· Man

· man,

· man,”

· Man.

· man.

· man.”

· man:

This is because the tokenizer for the 1st inverted file does not take punctuation into account, only white space. So, to solve this problem a tokenizer that utilizes white space and punctuation would be more efficient.
Also, since in Inverted File #1 the text is not folded you run into the same problem again with the search for ‘man’. You cannot only search for ‘man’, but you also need to search for ‘Man’ since the text is not folded.

Similarly, since the text is not stemmed you would have problems when searching for a term like ‘manager’. This is because the text ‘managers’ would also have to be searched since that word (manager) is also contained within the word managers.

When you look at the problems with Inverted File #1 that have been laid out above you can see that it is not an ideal candidate for our Inverted File. File #2 fixes many of these problems at the cost of a smaller vocabulary of words.

Lastly, since all stop words are removed in Inverted File #2 it will be easier to find your content. This is only because the stop words that were removed in Inverted File #2 are terms that are not content the user would be searching for. Also, by removing the stop words, less storage space will be used for the Inverted File.

Part III: Search

Because of the normalization process used in both inverted files different results will be output for each different search. In Inverted File #1 you will get different results each time since the normalization process that was used on Inverted File #1 maintained capitalization within words. However, in Inverted File #2 this is not the case. The search terms ‘county’ and ‘County’ are the same in the Inverted File #2. What the user should notice is how capitalization is treated within each Inverted File system. In the 1st Inverted File it is treated as a very important part of the searching process whereas in the 2nd inverted file it is not a feature at all.
When looking over the number of documents returned by searching for ‘County’, Inverted File #1 matches fewer documents than Inverted File #2. When you alter your search for ‘county’, Inverted File #2 matches many more documents than Inverted File #1. This makes it clear that the normalization process used in Inverted File #2 will return more matches than Inverted File #1.
Part IV: Inverse Document Frequency

Question A
This formula represents the Term-Frequency Inverse Document Frequency algorithm. It is designed to take in a keyword and the compare its weight against the document that it occurs in. The Wkd will increase when the keyword is found more frequently within a specific document. It will also increase when the term is found to be rare in the collection.
Question B
· Wkd
· The weight of the keyword k in document d

· Fkd
· The frequency of the keyword k in document d

· Norm

· The normalizing term. There are various different normalizing terms:

· Maximum documents in the collection

· Number of documents that do not contain the keyword
Question C

[image: image4]
This sketch depicts an inverted file system. The file contains the word/token, the frequency that it occurs in the corpus (Fk), the total number of documents that the word/token is contained in (Dk), and the head, a pointer to a spot on the disk where the information is stored. Also, the number of documents stored in the inverted file is stored in a variable NDocs.

The head in the inverted file points to a linked list that contains the postings. The linked list contains the Document ID, the Fkd (# of times in the document), and a head to point to the next item in the list. Also, this linked list points to another list that contains the position and the emphasis for the word/token. This also contains a next variable for more links in the list.
Alferdo





….





Zebra





Word/


Token





Fk





Dk





Head





DocID





Fkd





WHead





Next





Pos





Emp





Next





NDocs








Printed: 5/27/2004

Page 7 of 7

